About the sixth Hilbert's problem
نویسندگان
چکیده
منابع مشابه
A Resolution to Hilberts First Problem
The continuum hypothesis (CH) is one of and if not the most important open problems in set theory, one that is important for both mathematical and philosophical reasons. The general problem is determining whether there is an infinite set of real numbers that cannot be put into one-to-one correspondence with the natural numbers or be put into one-to-one correspondence with the real numbers respe...
متن کاملHilbert ’ s Sixth Problem ∗
This talk will come in four parts. First, I will introduce the Riemann hypothesis (RH) as it was first introduced, using the Riemann zeta function, and discuss briefly its connection to number theory and prime numbers. Second, I will make this connection explicit by discussion a famous problem equivalent to RH. Third, I will examine the generalised Riemann hypothesis (GRH) and, finally, will li...
متن کاملthe problem of divine hiddenness
این رساله به مساله احتجاب الهی و مشکلات برهان مبتنی بر این مساله میپردازد. مساله احتجاب الهی مساله ای به قدمت ادیان است که به طور خاصی در مورد ادیان ابراهیمی اهمیت پیدا میکند. در ادیان ابراهیمی با توجه به تعالی خداوند و در عین حال خالقیت و حضور او و سخن گفتن و ارتباط شهودی او با بعضی از انسانهای ساکن زمین مساله ای پدید میاید با پرسشهایی از قبیل اینکه چرا ارتباط مستقیم ویا حداقل ارتباط وافی به ب...
15 صفحه اولthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولA Note on Hilberts Operator
LEMMA L 1 When Kp< oo, then &fis a continuous (bounded) linear transformation with both domain and range Lp( — <*> , oo ), and § 2 / = — ƒ. LEMMA 2. Whenf(t)ÇzLi(— <*>, oo), then §ƒ exists for almost all x in ( — oo , co ), but does not necessarily belong to Li(a, b), where a, b are arbitrary numbers(— oo ^a<b^ oo) ; however (l+x)~\ &f\ÇzLi(— oo , co) when 0<q<l. When f and ^f belong to Li(— oo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 1982
ISSN: 0011-4642,1572-9141
DOI: 10.21136/cmj.1982.101783